Kumiko Tanaka-Ishii's Group

We describe the universal nature of communication and language through mathematical models obtained by computing big data consisting of large-scale language/network resources. Using these new models, we create communication software applications.
Computational/Mathematical Modeling of Language
x Estimation of Complexity of Language
x Mathematical Models Underlying Sentence Structure
x Computational Universals of Language
Communication Science using Compex Systems Theory
x Study of communication network structure
x Large-scale simulation of social communication network
x Control methods of information spread
Natural Language Processing
x Unsupervised Morphological/Syntactic/Semantic Analysis
x Multi-lingual Processing
x Machine Learning Methods for Language Processing
Communication Software Applications
x Language User Interface
x Translation/Proof Aid
x Computer Assisted Language Learning
x Mining from Social Network Systems
x Media Analysis
x Web Document Processing
x Algorithms for Large Scale Retrieval/Extraction
x Dynamic Dictionaries
Recent Studies
Computational/Mathematical Linguistics
Studies of language have leapt into a new era through the increased availability of various language data, in massive quantities. We seek universal properties of language and describe them via mathematical models. The models are investigated using various corpora and language features.
Text Constancy Measures x
A constancy measure characterizes a given text by having an invariant value for any size larger than a certain amount. The study of such measures has a 70-year history dating back to Yule's K, with the original intended application of author identification. We mathematically and empirically examined various measures proposed since Yule, and reconsidered reports made so far, thus overviewing the study of constancy measures. Constancy measures are applied to variety of texts, including texts in different natural languages, programming languages and unknown scripts, and the complexity of natural language is investigated.
Statistical Properties of Articulation x
"When the complexity of a subsequent token increases, the location is at a context border." This phenomenon was first described by Zellig S. Harris, in his paper, "From phoneme to morpheme," in 1955. We have reformulated his hypothesis from a more information-theoretic viewpoint and verified it in various languages at different levels, from phonemes to morphemes, from morphemes to words, and from words to phrases. Generally, the hypothesis holds quite well in articulating a larger linguistic unit from a sequence formed of smaller units. This property has the potential for application to building un-supervised segmentation software.
Log Frequency and Familiarity x
The influence of quantity on the cognitive perception of linguistic units is studied by measuring the correlation between the frequency, obtained from various corpora, and the word familiarity, obtained through psychological experiments. In this figure, the plotted points represent words, with the horizontal axis indicating familiarity and the vertical axis indicating log frequency, as measured for 2 terabytes of data. The log frequency and familiarity correlate well, and a high frequency is a necessary condition for a word to be familiar. Such results show how word familiarity is formed through the Weber-Fehner law. The larger the corpus, the higher the correlation. Also, speech corpus data correlate better with familiarity than do writing corpus data. Currently, these results are applied in statistical readability studies. This work has been conducted with Hiroshi Terada.
Communication Science Using Complex Systems Theory
Social media, via platforms such as Twitter, has become invaluable. Social media consists of links among people and constitutes a complex network system. We thus investigate the nature of communication as a complex network system.
Large-scale simulation of social communication network x
After the 2011 earthquake in the Tohoku area of Japan, Twitter played a crucial role in helping with searching for victims and locating resources. To study the mathematical nature underlying information delivery on social media, we crawled the topology of a social network system on a very large scale, with over 100 million nodes. On this gigantic graph, the best mathematical model of communication is obtained via simulation, so that the simulated macroscopic statistics, such as the speed and bounds of information spread, conform with those of the real data. We also study the best way to visualize information spread.
Studies of communication network structure x
A communication network consists of various local network structures, and these function as the bases of various social acts. For example, crimes such as phishing and money laundering are carried out according to a specific local network structure. Likewise, social opinions are formed in a community of a certain size that has tighter link connections. We therefore study the relations between certain social acts and local network structures. Our assistant professor Shohei Usui earned prizes for his presentations about this in 2013, at the annual meeting of the Japanese Society for Artificial Intelligence (JSAI), and in 2015, at the JSAI-SIG for Social System Studies.
Control of false information spread x
Most social media users do not check the reliability of information before sending it to other people. This causes the spread of fake news and false rumors. Such misinformation can lead to confusion, and in an emergency, it could even hurt people in the worst case. We thus mathematically characterize such false information spread by investigating the communication routes and the properties of users involved in the spread.
Natural Language Processing, Information Retrieval and Extraction
Language technologies such as speaking and writing are attributed to humans, and the linguistic field has been considered part of the humanities. Today, elements of these language technologies require processing by machines that can handle immense amounts of language data. We thus study key technologies needed for such language processing.
Detection of Changes Within a Text x
Recent texts are often conjuncts of different kinds of text. For example, many wiki documents are multilingual, consisting of a part in one language and another part in English. Another example is plagiarism, where part of a text was previously authored by someone besides the author. We seek mathematical methods for detecting such changes in text styles, through the use of information theory and statistical outlier detection. This research has been conducted with Hiroshi Yamaguchi.
Deterministic Tree-based Parsing x
Supervised parsing has been extensively studied and forms the basis for semi-supervised/unsupervised methods. Given the contrast between global optimization and deterministic methods, it is interesting to ask whether all (qualitatively different) supervised parsing methods have already been developed. Through such analysis, Kotaroh Kitagawa proposed a common way to enhance previous deterministic parsing methods by changing the unit of processing from a word to a tree. This naturally adds local search to deterministic parsing methods, thus taking advantage of both global optimization and determinism.
Sorting Texts by Readability x
For efficient language learning, it is crucial to read texts of the appropriate language learning level. Readability evaluation has a history of more than 50 years, and recent approaches use machine learning. Specifically, there have been two main approaches: regression and categorization. In contrast, we have devised a new method: readability by sorting. Here, machine learning is applied to produce a comparator that judges which of the two given texts is relatively more difficult. With this comparator, a set of texts is sorted and the readability of a given text is modeled as a ranking among the sorted texts. The same method is applicable to other text scoring problems. This work was conducted with Satoshi Tezuka and Hiroshi Terada.
Communication Software
Today, a variety of people use a variety of languages through a variety of devices. There is a strong need for software applications that aid communication, both among humans and between humans and various devices. Focusing on language, we seek useful software applications that can aid human language processing and communication.
Logue: Speech Analysis for Everyone Logue screenshot
Logue is a system to help users discover and correct problems in their speech. It is demonstrated as a smartphone application that listens to a user's voice, estimates speech features such as speed and enunciation clarity, and provides real-time graphical feedback. There are very few people who would claim to have perfect speech. Depending on the speaker, speech can be too loud, too fast, mumbled, and so on. However, it can be difficult to be aware that these problems exist in one's speech, and even then it is difficult to shake these bad habits. Our aim is to create an automated, objective system that can identify these problems, and prompt the user when they emerge. Logue applies its own set of speech analysis methods. These are light-weight to allow real-time feedback on resource-limited platforms such as smartphones, and intelligent to reliably estimate high-level, abstract features such as "enunciation clarity". Evaluations to date have shown that these methods can be effective in our goal of identification and assistance in correction of speech problems. This system was implemented by Daniel Heffernan, graduating in 2013 from Dept. Creative Informatics, IST, University of Tokyo. The system will be available via the iOS App Store some time in 2013.
PicoTrans : An Icon-driven User Interface for Machine Translation x
PicoTrans is a user interface for travelers, which integrates the popular notion of a picture book with a statistical machine translation system that can translate arbitrary word sequences. The simple paradigm of pointing at pictures is used as the primary method of user input, so the device can be used as if it were a picture book. The result is fed to a module that translates the sentence into another language. W have developed a prototype system that inherits many of the positive features of both approaches, while at the same time mitigating their main weaknesses. PicoTrans is studied with Wei Song and Andrew Finch, along with Eiichiro Sumita of NICT. We won the Best Paper Award at IUI2011.
Kanji Lookup for Everybody: Kansuke x
The Kansuke kanji lookup method is not based on the arbitrary conventions of how ideograms are drawn, but rather, on a code consisting of three variables: the numbers of horizontal, vertical, and other strokes. For example, the code for the ideogram "東" (higashi, meaning east) is three vertical strokes, four horizontal strokes, and two other strokes. With such codes, a non-native learner of Japanese or Chinese can look up ideograms even with no knowledge of the ideographic conventions used by natives. This study has been done with Julian Godon. Our presentation on this software won the Presentation Award at the annual conference of the Association for NLP, Japan, in 2007.